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1 Introduction

Distributed satellite systems is an enabling technology for many future NASA /DoD earth and space
science missions, such as MMS, MAXIM, Leonardo, and LISA [1, 2, 3]. While formation flying offers
significant science benefits, to reduce the operating costs for these missions it will be essential that
these multiple vehicles effectively act as a single spacecraft by performing coordinated observations.
Autonomous guidance, navigation, and control as part of a coordinated fleet-autonomy is a key
technology that will help accomplish this complex goal. This is no small task, as most current
space missions require significant input from the ground for even relatively simple decisions such as
thruster burns. Work for the NMP DS1 mission focused on the development of the New Millennium
Remote Agent (NMRA) architecture for autonomous spacecraft control systems. NMRA integrates
traditional real-time monitoring and control with components for constraint-based planning, robust
multi-threaded execution, and model-based diagnosis and reconfiguration. The complexity of using
an autonomous approach for space flight software was evident when most of its capabilities were
stripped off prior to launch (although more capability was uplinked subsequently, and the resulting
demonstration was very successful). However, the challenges for distributed satellite systems are
even more stringent because:

e There will typically be many vehicles that must coordinate to achieve the desired science goals
of the fleet. The complexity of the trajectory planning and resource allocation optimization
problems typically grow significantly with the number of vehicles.

e To reduce the burden on the ground operations, the fleet control software must be able to
interpret high-level specifications for the desired mission objectives, perhaps even directly
from scientists. Also, the science operations will be more dynamic and will occur over a much
longer life-time.

e Many missions will require the spacecraft to operate in close proximity to obtain good u-v
plane coverage. Thus fault tolerance and failure mode handling are imperative, and these
must be achieved rapidly. Also, the number of failure modes greatly increases for large fleets.

e Communication delays, unknown CPU loading due to science objectives and various failures
all contribute to non-deterministic event timings. This complicates the synchronization of
activities across the fleet.

Distributed satellite systems will require a fluid integration of autonomy and control research. To
date, work in the individual areas of satellite autonomy and distributed control has been extensive.
The autonomy area has focused on higher level, reasoning and decision making, and science data
fusion among other topics, with NMRA being a milestone. One example where this work has been
extended to the control of distributed satellites is the ObjectAgent (OA) software, which is a tool
for developing and implementing distributed software architectures. Control work within OA has
focused on a variety of GN&C topics (planning, coordination, navigation, and collision avoidance).
Many of these algorithms typically require extensive computation that will place large demands
on the real-time capabilities of the processors onboard each spacecraft, especially as the number
of satellites within the fleet increases. Extrapolation of the work in both of these areas to many
vehicles is often difficult, complex, and typically very ineflicient.

Thus there are several critical research areas that must be addressed to make distributed satellite

systems a reality. These include:

e The algorithms must work well for current DSS missions (typically 2-3 vehicles) but scale to
handle the larger fleets (816 satellites) that have been proposed for future missions.



e In addition to traditional fault detection and recovery, the algorithms must be robust to
fleet-level faults, loss of shared information, communication latency, relative control and es-
timation, and collisions.

¢ The computation, information management and communication must be well distributed.

e Robust distributed autonomous GN&C algorithms are required. The flight software must be
flexible and easy to adapt, such as allowing the software blocks to be dynamically loaded.

These topics are the focus of our on-going CETDP research effort. In particular, our research
is focused on the design and implementation of algorithms that can be combined to address the
full set of GN&C issues for formation flying spacecraft. As shown in Figure 1, these include
techniques to perform the relative spacecraft navigation (e.g., with carrier-phase differential GPS);
the distributed fleet planning, coordination, and control; and fleet fault detection and recovery.
Our particular goal is to ensure that these formation flying algorithms can scale to larger fleets,
so an important part of this effort is to investigate algorithms that are consistent with various
implementation architectures — distributed, decentralized, and centralized. Thus this analysis pays
particular attention to the distribution of the communication and computation loads; whether the
desired levels of performance (e.g., mission goals) can be achieved robustly and safely; and to the
implementation of fail-safe modes of operation.

2 Technical Developments
2.1 Formation Flying Estimation and Control Architectures

Formation flying is inherently a distributed prob-
lem, and achieving the mission goals requires the
tight integration of several algorithms. Figure 1

shows the complicated information flow between : A,__,m_h,
the various estimation, coordination, and control ..
algorithms for a typical formation flying control R

system. Several of these algorithms can natu- :

rally be decentralized or distributed, but others "“'-"'-‘f-""
require combined or fleet information, and thus B
must be performed within a centralized or hier-
archic architecture. Typically, the decision to be
made with regard to architecture design is one of
distribution. Dividing estimation, coordination,
or control algorithms for distribution across the  pjg. 1: Formation flying GN&C algorithms.
fleet can provide benefits such as robustness, flex-  [qplicit that the estimation, coordination,

ibility, computational speed, and improved auton-  ¢ontrol would be distributed across the fleet.
omy. Parallel processing, if scaled properly, could

dramatically reduce the computation time compared to a completely centralized architecture. Fur-
thermore, the modularity inherent in distributed architectures usually lends itself easily to expan-
sion. These benefits of distributed architectures, however, must be weighed against the disadvan-
tages, such as increased inter-spacecraft communications, possible non-determinacy of solutions
(synchronization), and higher mission risk stemming from the increase in overall architecture com-
plexity. They key issue here is information management, as significant communication of both raw
data (e.g., GPS carrier phase measurements) and solutions (e.g., estimated positions and velocities,
coordination requirements) must be shared.
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One complication when analyzing various information architectures is that estimation, coordina-
tion, and control algorithms must be developed for cach configuration to correctly establish the
computation and communication requirements. To make specific statements regarding the benefits
and/or disadvantages of certain architectures, it is necessary to perform an in-depth analysis of
several estimation and control approaches. Previous work compared distributed, centralized, and
master-slave architectures for formation flying using early ObjectAgent based software. This work
indicated that a distributed architecture is the best at reducing the computational and communi-
cation requirements [4, 5]. However, this work did not implement full GPS estimation algorithms,
nor did it address real-time issues, or control for larger clusters. However, much work has recently
been done on the navigation and control for formation flying [6, 7], and these techniques can be
used in our current analysis. Qur approach here is to analyze different control architectures, given
a common set of base algorithm solutions. Although choosing a particular controller and estimator
presents a point solution to the fleet GN&C problem, this allows us to make very concrete com-
parisons between alternative architectures. A key milestone in this work has been to identify the
additional GN&C algorithms required to populate the distributed and centralized navigation and
control architectures that will be investigated further.

2.2 Formation Flying Technologies
This section describes the key technologies that have recently been integrated into the testbed.

Formation Flying Control: Many alternative formation flying control strategies have been
recently proposed. We have focused on using a model-predictive control approach based on linear
programming (LP). A key advantage of this approach is that it can directly include state constraints
(e.g., errorbox limits) and input constraints (e.g., actuator limitations) in the “formation-keeping”
trajectory optimization. A key milestone of recent work has been to develop a direct procedure
for calculating the fleet reference point (called the virtual center) that can be used to determine
the desired states for each vehicle in the fleet [8]. The calculation of this virtual center is based on
measurements available from the relative navigation sensing system (carrier-phase differential GPS)
developed for this application. The selection of the reference point includes a weighting on fuel use
across the fleet, which facilitates increased coordination and cooperation within the decentralized
control system. The approach has been demonstrated using fully nonlinear simulations, and the
results demonstrated the reduction in fuel use that can be obtained with this improved cooperation.

Improvements in Initial Conditions: A number of future spacecraft formation flying missions
will require spacecraft to maintain specified separations or relative geometries [9, 10, 11]. These
requirements stem from the need to obtain scientific data simultaneously from widely separated
locations or the need to take data in the same location at frequent intervals (10, 12]. To minimize
control effort, orbits can be chosen that naturally prevent the spacecraft from separating.. One type
of drift-free orbit, known as a passive aperture, is based on the elimination of secular terms from
Hill’s equations [13]. The general form of Hill’s equations is stated in terms of six initial conditions
that define a satellite’s orbit relative to the origin of the Hill's frame (z is the radial direction, y is
the along-track direction, and z is the across-track direction).

In this case, the only term contributing to secular drift is (35(0) + 6nrerx(0))t. Thus, the condition
to prevent spacecraft separation over time is y(0) = —2n.fx(0). This approach works well for
formations in circular orbits, where the separation between spacecraft is on the order of 100m.
However, the accuracy of Hill’s equations degrades as the inter-spacecraft separation is extended,
so choosing the initial conditions as given above will no longer eliminate secular drift. Alfriend et
al. [14] recently proposed an approach that extends the validity of Hill’s equations to larger inter-



spacecraft separations by adding a set of second order perturbations. This approach is derived for a
specific solution to Hill's equations with initial conditions that restrict the formation to a projected
circle in the y-z plane. In this case, the radius of the projected circle is the same for all satellites
in the formation and the position of the satellites in the circle is chosen by an angular offset. This
approach works well but is overly restrictive, because the formation geometry must be specified by
only two initial conditions.

The MMS mission, will require a widely separated regular tetrahedron geometry to fulfill its science
objectives, but the initial conditions available are not sufficient to describe a tetrahedron. In order
to use the nonlinearity correction with MMS, a key milestone of recent work was to extend the
basic approach in Ref. [14] to a more general solution of Hill’s equations:
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The secular term cancellation now depends on all five initial conditions from the Hill’s solution in
Eq. 1. The nonlinearity correction method developed here can be used to find initial conditions
that substantially reduce secular drift for widely spaced formations, with the capability to specify
5 of the 6 possible initial conditions. This approach has been used to create recurring tetrahedron
formations with sides extending beyond 10 km, whereas previous approaches restricted formations
to have inter-spacecraft separations of approximately 0.1 km.

Planner Development: The previous section presented a way to initialize spacecraft in drift
free formations. In practice, there are always differential disturbances acting on the spacecraft
in a formation that will tend to make the formation drift even if it has been initialized correctly
and control will be required to maintain the formation geometry. A linear programming (LP)
trajectory planning approach has been developed to design fuel-optimized trajectories and station-
keeping control inputs [15]. The basic form of the LP is

min [|uf]; subject to Au<b (3)



where u is the vector of fuel inputs (AV) at each time step and A, b are functions of the linearized
spacecraft dynamics, initial conditions, and final conditions. The LP determines the control inputs
for a specified time interval that minimizes the fuel cost (the sum of the inputs) while satisfying
the constraints on the trajectory. Constraints to the problem can include: state constraints such as
remaining within some tolerance of a specified point, maximum input values (actuator saturation),
and terminal constraints. This approach can include differential disturbances such as drag and
linearized forms of the differential J, effects [15]. To complete the low-level control design, the
LP is also embedded within a real-time optimization control approach that monitors the space-
craft relative positions and velocities, and then redesigns the control input sequence if the vehicle
approaches the edge of the error box [15].

A mission with a highly elliptical orbit (e.g., MMS) will require a propagator that accounts for
eccentricity. Two common approaches to propagating relative states in eccentric orbits are Lawden’s
equations [16] and Melton’s equations [17]. Melton’s approach is in the time-domain, but is only
valid for eccentricities up to 0.3, which is much less than that required for MMS {17]. Lawden’s
equations are valid for all eccentricities, but are written as a function of the true anomaly. Tillerson
presented a relatively simple strategy of designing the trajectories as a function of the true anomaly,
and then converting back to the time-domain for implementation. However, that is a complex
process to perform in real-time and can introduce errors if the commands are not implemented in
the correct way. A key milestone of recent work was to develop a variation on Lawden’s equations
based on a derivation in Ref. [18] that corrects this problem. The following is a linear time-varying
(LTV) propagator that is valid for any elliptical orbit,
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and the reference orbit parameters are f,of — true anomaly, n.s — period, and e — eccentricity. Also,
from Ref. [19]
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The propagator is given as a function of the true anomaly, making it parameter varying. By using
Kepler’s equation or a variety of other common techniques, an accurate mapping between elapsed
time and true anomaly of the reference orbit can be created [19]. If such a mapping is created before
the planning step, then .. will be a known function of time, and the equations can effectively be
rewritten as being linear time-varying. This result is a simple way to propagate a system in a
highly elliptical orbit using fixed time-steps. This enables the use of the time-varying discretized
form of these dynamics with the LP optimization technique in Eq. 3 and thereby extends the range
of applications where the planner developed in Ref. [15] can be used effectively. Furthermore, the



need for a real-time domain conversion while executing the resulting plan is eliminated, instead
shifting added computation to the pre-planning phase, before any optimization takes place.

Initial Condition Analysis Results: A key milestone of recent work was the completion
of the investigation of the best models & initial conditions to use in the planning algorithms for
formations with larger baselines. The initial condition correction for nonlinearity (called NL) was
tested against initializing with eccentricity corrections (EC), initializing with both eccentricity
and nonlinearity corrections (NLEC), and initializing ignoring all corrections (NO). In each case, a
tetrahedron with 10 km sides was created in an orbit with a period of 0.0824 days and e = 0.05. The
quality factor Qgm was used to compare the approaches [11]. The tetrahedron shape is designed
to appear only at apogee, so measurements of Qgym are made once per orbit at whatever point the
shape is most regular. The results for the four initialization cases are shown in Figure 3, which plots
the Qgm trend after each orbit. The results clearly show that the EC and NLEC initializations
maintain their shapes much longer than the NO and NL. It is also clear that correctly accounting
for the orbit eccentricity has a significant influence on the quality of the tetrahedron, confirming
the analysis in [18] (NL = EC). The improvement from the eccentricity corrected to the combined
nonlinearity /eccentricity corrected initialization (EC =3 NLEC) is smaller but still clearly important
for reducing the shape deformation over time [14]. A second simulation was conducted with the
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Fig. 3: Effect of initial conditions on tetrahe-

Fig. 4: Effect of initial conditions on tetrahe-
dron quality in low Earth orbit (e = 0.05)

dron quality — highly eccentric orbit (e = 0.82)

same formation, but with a highly elliptical orbit (period of 1 day, e = 0.82). The results of that
simulation are shown in Figure 4 using 3 ~ Qgm as the metric. The quality of the tetrahedron in

the formation decreases negligibly over 40 orbits and at nearly the same rate for both the EC and
NLEC initializations.

2.3 Planning in Eccentric Orbits

Previous work performed an in-depth exploration of minimum-time and minimum-fuel planning
algorithms for satellites in circular reference orbits [33]. In this work, minimum time or fuel
thruster commands are assumed, and the optimal control problem is solved using a fast, gradient
search method. The initial and final orbits are parameterized in terms of local phase and position,
and a cluster planner is developed which solves the optimal control problem as a function of these
parameters. A realistic implementation of both cluster planning and collision avoidance was shown
last year. Work this year has focused on extending the approach to more practical cases where the



satellite clusters are in non-circular orbits. For example, as discussed in the previous section, MMS
is proposing to use orbits with eccentricities ranging from e ~ 0.6-0.9. It is therefore useful to have
a planner capable of giving optimal performance about any ellipse.

This work is based on writing the relative dynamics of a reference elliptical orbit in time-varying
form; the system propagation can be written as a function of true anomaly 6 [16]. As shown in
Ref. [33], the initial and final states for a given reference radius, true anomaly, and eccentricity can
be written in a manner that is similar to the circular case; therefore, it is again possible to search
for a time or fuel-optimal series of inputs by assuming a thruster profile.
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The primary difficulty in completing this search is evaluating the contribution of the thrust, which
appears as an integral with no closed-form solution. However, it is possible to circumvent this
problem by noting that the functions within the integrals can be approximated with polynomials.
The original function is broken up into several segments, each of which are captured by separate
polynomials, and the parts are then combined to produce a continuous approximation that is exactly
valid at each of the breakpoints. Because the approximation is continuous, the integral is also
continuous. The functions in the orbits of interest change slowly over time, so the error is typically
less that 1% for a single orbit represented by 16 segments. As with the circular reference orbit,
the desired switches for the elliptical orbit bring the satellite from the initial state to the desired
final condition with the smallest change in true anomaly. A numerical solver is then employed
to determine these switching angles, with initial guesses for small eccentricities obtained from the
circular case and these are used as initial guesses for orbits with larger eccentricities. The initial
results have been submitted to the 2003 GNC conference [34]. A key milestone in this work was
to demonstrate the approach on a set of simple formation changes, such as those shown in Figure 6.

2.4 Distributed Formation Keeping Controller and Communication Topology Design

An algorithm has been developed for the synthesis of a bandwidth-limited controller for distributed
systems; an LQR-type controller is used as a baseline for simplicity. Many existing distributed com-
mand and control protocols require full connectivity in the communication graph [32] or do not



take into account the effects of reduced connectivity graphs [27, 29, 30]. (The communication graph
is a useful design tool representing the flow of information in the network, where each vertex on
the graph represents an element in the system and each edge connecting two vertices represents
information flow, either sensed or transmitted, between the the two vehicles.) Yook, et al [28] have
shown that such effects can be substantial. As a result, missions with large numbers of vehicles, 32
in the case of NASA’s MAXIM [3], will require either substantially more communication/sensing
resources than those which currently exist, or command and control algorithms that use decreased
bandwidth. A combined synthesis procedure is proposed that will yield robust distributed con-
trollers and networks used by such controllers.

Given the standard LQR problem

S B
J* = min Tlx_{r;o T./o (27 Rypx + u” Ryyu) dt
the weighting matrix R,, balances the absolute state tracking and formation keeping by using the
performance output

z=Cx = [xf, . ,m%, (zq7 — xz)T, (z; — m3)T, v {znoy - a:N)T]T
where z = [mf,...,me. A performance weighting matrix R, is then used to weight each
portion of the distributed system by defining R, = CTR,,C. A distributed implementation of
the standard LQR controller requires a fully connected communications graph, which may not be
be feasible for satellites with limited communications and processing power. This work focuses
on finding a spanning tree (defined as a graph where there exists only one path between all pairs
of vertices) where each vertex represents a vehicle in the formation and each edge represents the
bidirectional sharing of state data between the the two vehicles. A spanning tree is chosen here
because it requires only N — 1 edges between the nodes, whereas a fully connected architecture
requires O(N?) edges. It is assumed that all sub-trees of the optimal tree are themselves optimal.
This is provably true in the case of constant weights on the edges, i.e., the classic minimum spanning
tree (MST) problem, but not necessarily for our non-linear cost function J*(V, E') where V are the
nodes in the graph and E are the edges. Under such an assumption, the optimal tree can be
“grown” one node at a time using an algorithm similar to Prim’s [31]. This heuristic has been
shown to yield near optimal controllers for such trees.

Consider an network of N = 8 vehicles. We have used Hill’s linear time-invariant dynamics [19]
with zero-mean white process noise that is uncorrelated across the vehicles in the network. We
restricted the performance weighting matrix to be block diagonal such that

2T Rypx = inTCimi + Z (z; — ;nj)TCij(mi - ;)
i€V ijev
1<

where C;, Ci; € R%*® and V is the set of vertices V = {1,...,N}. We chose Ryy = l24, Cs = 1016,
Cy2 = Cgg = 100, Ci3 = C7g = 100016, and all other C; = C;; = I, where I, is the n by n
identity matrix. An additional constraint has been added that each node should have no more than
log,(N) = 3 neighboring nodes. The resulting graph is shown in Figure 7. Note that the edges
with the higher weights, C;; # Ig, are preserved. Figure 8 shows the cost decrease as the edges are
added; the baseline fully-connected LQR cost is also shown for comparison.
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2.5 GPS Estimation Algorithms

As the fleets become larger, the GN&C tasks become more and more onerous due to the increased
state size and available measurement data. As a result, algorithmic decentralization becomes a
necessity to balance the computational load across the fleet and to manage the interspacecraft
communication [22]. This is true not only for the optimal planning, coordination and control,
but also for the fleet state estimation. State estimation for a fleet of many vehicles is challenging
from many perspectives. Firstly, the raw measurement data is typically collected in a decentralized
manner (i.e., each vehicle taking measurements that pertain only to its own state), strongly sug-
gesting a decentralized estimator to handle the data. Secondly, many of the estimation techniques
commonly used are non-linear and require the use of extended (often iterated) Kalman filters.

The Global Positioning System (GPS) has been extensively investigated for fleet state estimation
as part of the Orion project [20]. Recent work on GPS estimators for relative navigation using
Carrier-Phase Differential GPS (CDGPS) has resulted in <2.0 cm accuracy in relative position
and <0.5 mm/s in relative velocity [20]. Note that these results were obtained using a completely
decentralized estimation filter. The high accuracy results achieved in a decentralized architecture
validate that the relative GPS measurements taken on one vehicle can be treated as if they are
entirely uncorrelated from the measurements taken on other vehicles. Thus the full fleet measure-
ment matrix, H, can be treated as block-diagonal and small coupling effects (such as a differential
ionosphere) can be ignored if the fleet separation is less than 10 km.

While GPS can be used as effective sensor for many ground, air and space applications, its viabil-
ity relies on constant visibility of the NAVSTAR GPS constellation. For terrestrial applications,
this visibility can be interrupted by buildings or trees. In space, NAVSTAR visibility begins to
breakdown at high orbital altitudes such as those seen in highly elliptic or L2 orbits. Thus, a
measurement augmentation is desired to permit estimation through these spells of invisibility and
also to improve estimation accuracy when the NAVSTAR constellation is visible.

This augmentation can be achieved through the use of local ranging devices on each vehicle that
measure a scalar range and velocity between each pair of vehicles in the fleet 23, 21, 24]. Unfor-
tunately, however, the local range measurements taken by each vehicle are strongly correlated to
the measurements taken by every other vehicle, thus making the full fleet measurement matrix,
H, no longer block-diagonal and non-trivial to decentralize. In contrast to the GPS-only estima-
tion scenario which effectively decentralized for reasonably sized fleet separations, this estimation



problem does not decorrelate at any level. Thus care must be taken to decentralize the estima-
tion algorithms while retaining as much accuracy as possible and keeping the computation and
interspacecraft communication to a minimum.

A key milestone in recent work was the design of various decentralized estimation algorithms
and architectures that extend the basic GPS navigation scenario beyond LEQO, into MEO and be-
yond [25]. Using a Schmidt-Kalman filter, reduced-order filters have been developed that produce
results that nearly replicate the centralized performance, while keeping communication and com-
putation to a minimum. Hierarchic methods have also been developed to mitigate the problem of
fleet scaling by dividing the fleet into small clusters.

2.6 Fault Detection

The fault detector is an on-board satellite agent within OA, the purpose of which is to determine
the status of the other satellites in the satellite formation and to report to the on-board satel-
lite controller whenever a satellite in the formation has failed. The design of the fault detector
communications network is similar to that of a token ring. The reason for this architecture is to
minimize the amount of information about the network each satellite has to store, and to minimize
the number of messages passed between satellites.

Each on-board satellite fault detector is initialized to know its successor in the ©)

ring. The first satellite to be instantiated as the ring initiator starts the ring / \

protocol. The satellite initiating the ring protocol generates a packet called é ©
a “token”, and passes this token to its successor satellite. The successor

satellite passes the token on to its successor satellite, and so on, as shown \ /

in Figure 9(a). The last satellite in the ring passes the token back to the @

satellite that started the process; and the process is repeated ad infinitum.
(a) Nominal State

In the event of a single satellite failure, the ring network is designed to recon-
figure itself automatically to restore the broken ring. Each agent is running

an on-board timer. A fault is considered to have occurred when an agent’s / > Q\
timer expires before the token is received from its predecessor (the timer is

reset upon the receipt of the token). In the event of such a failure, the de- O, ®
tecting agent notifies the rest of the network of the fault by passing an error /
token to the network. This token propagates in exactly the same way the o

as the normal token. The error token contains the ID of the dead spacecraft

as well as the ID of the detecting spacecraft and because of the ring nature (b) Satellite Failure

of the network, the last spacecraft to receive the error token is always the

predecessor of the dead spacecraft. This spacecraft creates a connection to ()

the originating spacecraft, passes it a normal token and the network resumes - \
normal operation.

For example, in Figure 9(b), the link between satellites 1 and 2 is broken since

satellite 1 has failed. The fault detector on satellite 2 detects this failure when ®

its internal timer expires before receiving the token from satellite 1. It notifies

its controller, and sends an error message to satellite 3 stating that satellite (c) Ring Restored

1 has failed. Satellite 3’s fault detector informs the controller that satellite 1
has failed, and relays this error message to satellite 4; again satellite 4’s fault
detector notifies its controller of the network failure, but this time satellite 4
notices that satellite 1 is its successor satellite. Since satellite 2 was the originator of the error token

Fig. 9: Fault De-
tector Modes
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(because satellite 1 was its predecessor), satellite 4 now reconfigures itself to connect to satellite
2. The ring network is now restored, shown in Figure 9(c), and the network returns to nominal
operations. This framework is easily adaptable to any number of satellites, however it is not robust
to simultaneous failures in the network.

2.7 ObjectAgent Development

To develop robust architectures for distributed satellite systems, our research encompasses both
the algorithm development and the software implementation. The fleet software is based on the
ObjectAgent (OA) framework that has been developed by Princeton Satellite Systems to increase
the reconfigurability, modularity and reliability of the overall control system. With its emphasis
on robustly handling communication between Agents that coordinate to complete complex tasks,
the OA software provides a natural framework for developing these distributed autonomous GN&C
algorithms. ObjectAgent extends the classical method for writing spacecraft software by using
“software agents” as the basis of the system.

OA is a multi-threaded architecture for distributed systems. It uses message passing for thread
communication and can run on any POSIX compliant operating system. As shown in Fig. 10, there
are three tiers to the architecture: PostOffice, Agent, and Skill. Agents are attached to PostOffices
and Skills are attached to Agents. Each entity is a separate POSIX thread. There may be any
number of PostOffices on a processor, and any number of processors in the system.

The Agent is the base unit for communication,
and all OA messages are passed between Agents.
Agents manage a set of user-defined Skills which
determine the functionality of the Agents. Gen-
erally, each Skill corresponds to one basic func-
tion, has inputs and outputs, and triggers one or
more actions. An Agent knows its list of Skills,
inputs, and outputs, and built-in functions enable
it to hunt for inputs and automatically configure
itself upon launch. In this sense, an ObjectA-
gent system is self-organizing. The PostOffice en-
ables seamless Agent communication throughout
the OA system. In particular, each PostOffice
manages a set of Agents, handles communication
between different processors via TCP/IP or the
user’s choice of network protocol, and provides a framework for the dynamic creation of Agents.
The PostOffice network is a fully routed network and can be reconfigured on the fly. Each link
in the network can specify a separate network protocol, such as TCP/IP. Once the protocols are
specified, Agent communication is transparent to the user; a Skill only needs to know the name of
the data and the Agent providing or needing it.

Fig. 10: ObjectAgent Architecture

There are several features of the OA architecture that are specifically related to the GN&C problem:
(i) message passing; (ii) modularity; (iii) reconfigurability; and (iv) robustness to software faults.The
flexible messaging architecture is a fundamental component of OA since it provides a reliable
method for Agent-to-Agent communication both on a single processor and across networks. The
inter-Agent messaging is handled by the PostOffice, such that the PostOffice provides distributed
mutual exclusion services and efficient broadcast/discovery services to its Agents. Each message
has both a creation and data timetag and input messages may be queued. Messages may be either
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point-to-point between Agents or broadcast by the PostOffice. An important result of using message
passing is that the Agents can easily be monitored or commanded. An OA GUI is provided which
can connect to an OA system using TCP/IP and allows users to view and record the messages for
any PostOffice and send commands to any Agent.

OA was designed for distributed systems and development. Developers at different locations
can write Agents and Skills and reliably combine them; the only components that must be managed
are the data interfaces, as in any system. Another key feature of OA is run-time reconfigura-
bility. Agents can be dynamically loaded and unloaded without having to shut down the entire
software system. An Agent can also be dynamically assigned new Skills. This is achieved by pre-
compiling the new Agent or Skill into a library. The dynamic loading of Agents and PostOffices
allows the Agent network to evolve over time and frees spacecraft operators from the expensive
software patching process. The PostOffice network can also be reconfigured at run-time.

For OA to be useful for critical systems such as spacecraft control software, it must be robust to
software failures. OA is extremely robust and fault tolerant on a Post-Office level, and moderately
robust at the Agent level. Ideally, a runtime error in an Agent’s Skills would cause only that Agent
to terminate without affecting the rest of the Agents on the PostOffice; however this is difficult
to achieve in practice. A new feature of OA known as Agent sandboxing, to be completed in
early 2003, will allow each Agent to be in its own memory space. Sandboxing a critical Agent
will increase its robustness to failures equivalent to the PostOffice level in exchange for sacrificing
some performance. Without sandboxing, run-time errors that occur within an Agent or Skill on one
PostOffice will cause that PostOffice and all of its Agents to terminate. However, connected PostOf-
fices are not be affected since PostOffices can gracefully recover from network errors. Although fault
tolerance is largely dependent on the user implementation, OA provides hooks wherever possible
to notify Agents of problems, such as a notification that another Agent has died or returning an
undeliverable message to its sender. Agents can also assess the state of the processor on which they
operate to determine if they should pass tasks off to another Agent in the system.

The above features apply to OA in general. The following specific features have been added this
year which increase the flexibility and efficiency of the software:

e True least-cost routing,

e System-wide distributed mutual exclusion (DME),
e Removal of the Skill layer,

e The Agent sandboxing described above.

Previous versions of OA limited PostOffice networks to a tree, while an arbitrary web now enables
least-cost routing. The system-wide DME primitives, or mutexes, provide users with a simple way
to limit access to an external resource that may be scarce. Only one thread may use a system-
wide mutex object at a time, and subsequent threads that attempt to acquire the mutex must
block until the holder releases it. This could be used to enforce round-robin communication among
spacecraft by ensuring that only one spacecraft is allowed to send at a time, while still allowing any
spacecraft to decide, at any given time, that it needs to send. The Skill layer will no longer exist;
its functionality has been integrated with the Agent layer for a cleaner implementation. Removing
the overhead of the Agent threads as an organizational layer makes the software more efficient
and the implementation cleaner. This enables Agents to be arranged in any hierarchy, whereas
previously Skills could not have subordinate Skills, and allows Agent behaviors to be customized in
a straightforward way. Finally, the Agents can now be “sandboxed” in their own memory space. A
sandboxed Agent will not have the liability of affecting the entire PostOffice when a fault occurs. A
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sandboxed Agent can also run in a real-time operating system and connect to a PostOffice without
requiring a separate pipe construct.

In summary, the OA software environment provides the following key attributes directly related to
the overall goals of developing an autonomous GN&C system:

e Easily allows different software architectures (including different communication and compu-
tation schemes) to be defined and compared.

e Allows software to be quite flexible, with objects that can be dynamically loaded.
e Allows software to degrade gracefully.

e Allows transparency into software operation by monitoring Agent messages.

Real-time Capabilities of OA: In general, real-time applications in the context of control
require a real-time operating system and a real-time network. OA is a generic software architecture
that can be run using any combination of platforms. operating systems, and network protocols.
Consequently, the degree of real-time guarantee for any application running in OA is dependent on
the selected processor, operating system, and in the case of distributed control, network protocol.
In heterogeneous systems all of the components must be considered.

Since OA was built for any POSIX compliant operating system and not just real-time operating
systems, OA does not make use of any specific hard real-time calls. There are several options open
to developers for enforcing soft timing constraints. First, individual OA threads may be set at any
of the priority levels provided by the operating system. This could allow higher level threads to
block execution of lower threads. Second, each OA Skill thread can have a separate update rate.
Although the thread may be aperiodic and not depend on any update rate, it may also update very
rapidly in the case of a control thread or very slowly in the case of planning thread. The timing
precision for standard operating systems on modern processors is generally in the millisecond range,
but there are no timing guarantees.

If timing precision greater than milliseconds and/or hard guarantees are required, that por-
tion of the application requiring hard real-time can be placed in a separate loop which takes
advantage of the hard real-time calls native to the operating system. A key recent mile-
stone was to demonstrate this using Real-Time Linux on the current testbed. RTLinux guar-
antees timed events will be predictable within a tolerance of approximately 15 puseconds, pro-
vided “non-realtime” activities such as dynamic memory allocation are not being performed [26].
The soft real time processes remain in OA, and
they communicate with the hard real-time process
via pipes. The control loop for this demonstra-
tion modeled a low-level control component that
generates a sequence of thruster commands. The
OA Planning Agent generates a set of pulsewidths
using a sinusoid, which are piped to the real-time
process. The “control law” passes the pulsewidth
data to a parallel port pin so it can be viewed by
an oscilloscope. The applied values are sent to
a display Agent which prints them to the screen.
All software was run on one computer, and during the demonstration, that computer is artificially
loaded with “find” processes to show the effects on both the OA Agents and the real-time control
loop. Figure 11 shows a snap shot of the output display on an oscilloscope. The plot shows many

Fig. 11: Update rate with computer loading
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high-low transitions related to the simulated thruster pulses closely clustered (i.e., within 1 grid
mark) around zero, which indicates that the update rate of the control loop is accurate to within
+5 useconds.

2.8 Hardware-In-The-Loop Testbed

Figure 12 shows that the formation flying testbed is currently comprised of three types
of OA agents: Simulation, Spacecraft, and Fault Detection. One agent performs the dy-
namics simulation for all spacecraft in the testbed, and there is a spacecraft agent and
a fault detection agent for each spacecraft being simulated in the fleet. The spacecraft
agent coordinates all spacecraft software functions (e.g., control, planning, communication).
Fault detection services have been removed to a separate agent for operational robustness.
The skill structure (structure within agents) is ar-
ranged to minimize the effort required to add ca- {H 11 rect tomin]cat ion pa}h
pabilities to simulated spacecraft. FEach skill is
responsible for a very specific algorithmic task,
with clearly defined inputs and outputs that ef-
fectively create “capability modules.” The Simu-
lation agent contains a propagation skill that in-
puts thrust control and outputs the new states of
each spacecraft. Each spacecraft agent contains
an Executive skill that is the control system for
that spacecraft. The Executive skill receives state
telemetry from the simulation agent and returns
thruster commands to the simulation agent to be Fig. 12: Testbed OA Structure
applied to the appropriate spacecraft in the dy-

namic simulation. Figure 13 shows an example of one possible skill configuration wherein spacecraft
agents contain additional multi-tasked skills that perform tasks such as optimization, estimation,
and thruster mapping.

The physical structure of the testbed (i.e., where the software runs) is highly variable. For devel-
oping new software, the agents could all be run in a single computer. However, a more realistic
simulation would place the software for each spacecraft on a separate computer, with an additional
computer to simulate the vehicle motion and the environment (see Fig. 14). Switching between a
stand-alone and distributed configuration is very simple in this case, because the OA interprocess
and inter-computer communication are handled transparently by the same software interface, even
when the computers are at different universities. The multi-computer research presented here was
conducted between computers at Cornell and MIT. Thus far, all computers in the testbed have
been running Linux variants, however, it is possible that the testbed could combine computers
running the different operating systems that are supported by OA.

A key milestone achieved on this testbed was used the demonstration of a mission similar to
one segment of the MMS mission. Four spacecraft were arranged in a tetrahedron formation,
where the sides of the tetrahedron were each 10 km. The propagator used in the simulation agent
was a Runge-Kutta 7-8 routine that accounts for both J2 and drag for the osculating orbit. The
linear time-varying propagator discussed previously was used for the relative orbits. The initial
conditions of the satellites were chosen to create drift-free relative orbits that form a tetrahedron
configuration once per day (for an osculating orbit with a period of 24 hours). In this demonstration,
the simulation engine and four spacecraft are being run from five computers at Cornell and MIT.
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Fig. 13: Internal Agent Structure Fig. 14: Testbed Physical Structure

Typical results are shown in Figure 15. While simulating the spacecraft and the dynamics, the
testbed tracks the communication used by each agent each spacecraft. Figure 16 shows a plot of
communication usage by each satellite after a full orbit. The lower half of the graph shows the
instantaneous number of bytes being sent () and received (+4) by each satellite in the testbed. The
upper half of the graph shows the total number of bytes being sent by all agents over the history
of the simulation. The graph shows fewer bytes being sent than received, because messages with
multiple destinations have only been counted multiple times on receipt.
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During the demonstration, a catastrophic failure was inserted into one of the spacecraft. The failure
mechanism was the removal of that spacecraft’s computer from the testbed network. The result was
an immediate drop in overall communications and complete loss of instantaneous communication
for the failed satellite. This demonstration shows the testbed’s versatility as a tool for studying
different relevant mission classes from a variety of different perspectives. The framework provided
by OA proved to be particularly well suited to the development of the simulation and to the
monitoring of interprocess and network communications.

3 Relevant Publications Produced

See Refs. [6, 8, 25, 33, 34]

4 Significant Problems/Issues and Corrective Actions

None.
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5 Research Plans — Year 3

The primary focus so far has been on developing a full set of GN&C algorithms that can be
used to populate the various architectures, thereby enabling concrete comparisons of the various
implementation approaches. That work will wrap up early in year 3, with the results leading to a
full set of autonomous software tools for the fleet navigation and control. The following are specific
areas of work for the third year:

e Complete the evaluation of the navigation and control architectures (and algorithms) as a
function of the number of satellites.

o Full integration and verification of these algorithms in the distributed spacecraft OA testbed.
Use the full OA software architecture to measure the information flow and evaluate the algo-
rithm performance. This analysis will also consider communication uncertainties. Investigate
the real-time behavior of the full architectures and algorithms to ensure deterministic and
reliable fleet operations.

e Finalize a version of the autonomous decentralized control/networking approach using graph
theoretic methods, and implement the approach on the OA testbed.

e Several support functions for the autonomy of satellite clusters using OA will be developed,
implemented in OA, and studied more fully. These include fault detection using heartbeat
and token approaches, resource allocation, communication efliciency including that related to
real time implementation using several underlying protocols, and system security.

e Extend the current planning algorithms: examine the elliptical minimum-fuel problem; col-
lision avoidance in an eccentric orbit; large reference orbit maneuvers; extension to include
non-spherical gravitational effects.

e Extend the analysis of the nonlinearity correction to formations in orbits with large eccentric-
ities, such as MMS. The approach described in the report derives the nonlinearity correction
by separating the nonlinear affects of the baseline separation from the orbit eccentricity. How-
ever, simulation results have shown that this leads to corrections terms that actually increase
the drift rate rather than reducing it. However, we will first need to establish the poten-
tial benefits of this extra analysis, because the same simulations show that simply using the
eccentricity correction yields very good results.

5.1 Real-time Software Code in C Milestone

We have started to transition the algorithms from the previous MATLAB testbed so that they
can be executed in C on the OA testbed. That activity will continue, resulting in a full set of
GNC algorithms written in C that can be combined in various architectures across the distributed
spacecraft fleet. This includes software for the navigation, control, and fault detection algorithms.

5.2 Future ObjectAgent Work

Additional work will be performed in the area of monitoring OA threads for performance. Several
third-party tools will be investigated for this purpose and some type of performance monitoring
will be added to the existing OA monitoring GUI. Other areas of investigation include an artificial
intelligence library for use in Agents, tutorials for Agent hierarchies and other new features, and
universal timing for synchronizing Agents across the network.

The sandboxing of Agents, which will be complete in early 2003, will allow the real-time control loop
of the demo to be an actual Agent. The sandboxing code allows a separate process to behave as if it
is part of the local PostOffice using a pipe construct similar to that described above. A sandboxed
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Agent on a real-time operating system will be able to use interrupts to regulate a Skill's update
rate. This will allow future versions of the demo to be completely within the OA architecture.

6 Top-level Schedule

The primary milestones for Year 3 are:

Finalize the architecture analysis and algorithm design for the sample mission scenarios,
such as the MMS mission (August 2003). Code and demonstrate these algorithms on the
distributed OA testbed. Develop a large-scale demonstration of the integrated navigation,
fleet coordination, and vehicle control using the various computers available at MIT, Cornell,
and PSS (Feb 2004).

Demonstrate support functions in OA (fault detection, allocation, security) (May 2003).
Extend the GNC algorithms to account for errors/uncertainty in the dynamics and envi-
ronmental models by directly including robustness and adaptation (December 2003) and
demonstrate these enhancements on the OA testbed (March 2004).

Complete the analysis of the nonlinearity correction to formations in orbits with large eccen-
tricities (May 2003) and apply it to the MMS type mission (January 2004).

Finalize robust Keplerian based planner (May 2003), and demonstrate these enhancements
on the OA testbed using an MMS type mission (December 2003).

Complete an initial version of the autonomous decentralized control/networking approach
using graph theoretic methods (December 2003), and implement the approach on the OA
testbed using a MAXIM, Stellar Imager or other similar mission (March 2004).

References

[
[2]

3]
[4]

[10]

J. Leitner, F. Bauer, D. Folta, R. Carpenter, M. Moreau, and J. P. How, “Formation Flight
in Space,” GPS World, Feb. 2002, pp. 22-31.

http://gsfctechnology.gsfc.nasa.gov /dssmissionlist.htm

MAXIM website, http://maxim.gsfc.nasa.gov

Schetter, T., Campbell, M., and Surka, D., “Multiple Agent-Based Autonomy for Satellite
Constellations,” Lecture Notes in Computer Science, Vol. 1882, Springer-Verlag, Berlin, Ger-
many, 2000, pp. 151-165.

Campbell, M., Schetter, T., “Comparison of Multiple Agent-based Organizations for Satellite
Constellations,” AIAA Journal of Spacecraft and Rockets, March, 2002.

Tillerson, M. and How, J., “Advanced Guidance Algorithms for Spacecraft Formation Flying,”
presented at the American Control Conference, May 2002, pp. 2830-2835.

M. Tillerson, G. Inalhan, and How, J. P.,“Coordination and Control of Distributed Space-
craft Systems Using Convex Optimization Techniques,” International Journal of Robust and
Nonlinear Control, Vol. 12, No. 2, Jan 2002, pp. 207-242.

M. Tillerson, L. Breger, J. How, “Multiple Spacecraft Coordination & Control,” to appear at
the American Control Conference, June 2003.

J. How, R. Twiggs, D. Weidow, K. Hartman, and F. Bauer, “Orion: A low-cost demonstration
of formation flying in space using GPS,” in AJAA Astrodynamics Specialists Conf., Aug 1998.
Air Force Research Laboratory Space Vehicles Directorate, “TechSat 21 factsheet page.”
http://www.vs.afrl.af.mil/factsheets/TechSat21.html].

17



[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]
(20]
21]

22]

23
24
25)
26
27
28

[29]

[30]

J. Guzman and C. Schiff, “A Preliminary Study for a Tetrahedron Formation - Quality Factors
and Visualization (Spacecraft Formation Flying),” in AJAA/AAS Astrodynamics Specialists
Conf., Aug 2002.

F. Bauer, J. Bristow, D. Folta, K. Hartman, D. Quinn, J. How, “ Satellite Formation Flying
Using an Innovative Autonomous Control System (AutoCon) Environment,” Proceedings of
ATAA Guidance, Navigation, and Control Conference, Aug. 11-13, 1997, pp 657-666.

R. J. Sedwick, D. W. Miller and E. M. Kong, “Mitigation of Differential Perturbations in Syn-
thetic Apertures Comprised of Formation Flying Satellites,” presented at the 9th AAS/AIAA
Space Flight Mechanics Meeting, February 7-10, 1999.

K. T. Alfriend, H. Schaub, and D.-W. Gim, “Formation Flying: Accomodating Non-linearity
and Eccentricity Perturbations,” presented at the 12th AAS/AIAA Space Flight Mechanics
Meeting, January 27-30, 2002.

M. Tillerson, G. Inalhan, and J. How, “Coordination and Control of Distributed Spacecraft
Systems Using Convex Optimization Techniques,” International Journal of Robust and Non-
linear Control, vol 12, Issue 2-3, Feb.-Mar. 2002, p.207-242.

D. F. Lawden, Optimal Trajectories for Space Navigation, Butterworths, London, 1963.
Robert G. Melton, Time Explicit Representation of Relative Motion Between Elliptical Orbits,
Journal of Guidance, Control and Dynamics, Vol. 23, No. 4, July-August 2000, pp. 604-610.
G. Inalhan, M. Tillerson, J. How, “Relative Dynamics & Control of Spacecraft Formations in
Eccentric Orbits,” AIAA Journal of Guidance, Control, and Dynamics Vol. 25, No. 1, Jan.-Feb.
2002, pp. 48-59. '

D. A. Vallado. Fundamentals of Astrodynamics and Applications McGraw-Hill, 1997.

F. D. Busse, Precise Formation-State Estimation in Low Farth Orbit using Carrier Differ-
ential GPS. Ph.D. Dissertation, Stanford University, Dept. of Aeronautics and Astronautics,
anticipated Spring 2003.

C. W. Park, Precise Relative Navigation using Augmented CDGPS. Ph.D. Dissertation, Stan-
ford University, Dept. of Mechanical Eng., June 2001.

P. Ferguson, T. Yang, M. Tillerson, and J. P. How, “New Formation Flying Testbed for
Analyzing Distributed Estimation and Control Architectures,” ATAA Guidance, Navigation,
and Control Conference, Aug. 2002, (Paper 2002-4961).

T. Corazzini, Onboard Pseudolite Augmentation for Spacecraft Formation Flying. Ph.D. Dis-
sertation, Stanford University, Dept. of Aeronautics and Astronautics, Aug. 2000.

J. R. Carpenter, C. Gramling et al, “Relative Navigation of Formation-Flying Satellites,”
Proceedings of the International Symposium on Formation Flying, Toulouse France, Oct. 2002.
P. Ferguson, J. How, “Decentralized Estimation Algorithms for Formation Flying Spacecraft”.
Submitted to AIAA Guidance, Navigation and Control Conference, August 2003.

FSM Labs. RT Linux web page. http://www.fsmlabs.com/community/, 2002.

Leonard, N. E., Fiorelli E. , “Virtual Leaders, Artificial Potentials and Coordinated Control
of Groups,” Proc. 20th IEEE Conf. Decision and Control, 2001.

Yook, J K., Tilbury, D.M., Soparkar, N.R., “A Design Methodology for Distributed Control
Systems to Optimize Performance in the Presence of Time Delays”, Proceedings of the Amer-
ican Control Conference, Vol. 3; 2000 pp. 1959 -1964.

Olfati-Saber, R., Dunbar, W. B., Murray, R. M., “Cooperative Control of Multi-
Vehicle Systems Using Cost Graphs and Optimization” to appear at the ACC 2003.
http://www.cds.caltech.edu/ olfati/papers/acc03/acc03b.html

Mesbahi, M., Hadaegh F.Y., “Formation Flying Control of Multiple Spacecraft via Graphs,
Matrix Inequalities, and Switching”, 1999. Proceedings IEEE International Conference on

18



Control Applications, Vol. 2 | 1999 pp. 1211-1216.

[31] Prim, R.C., “Shortest Connection Networks and some Generalizations,” Bell System Technical
Journal, 36:1389-1401, 1957

[32] Speyer, J.L., “Computation and Transmission Requirements for a Decentralized Linear-
Quadratic-Gaussian Control Problem,” IEEE Trans. Autornatic Control, Vol. 3, No. 2, 1979

[33] M. Campbell, “Planning Algorithm for Multiple Satellite Clusters,” AIAA Paper 2002-4958,
and to appear in the AIAA Journal of Guidance, Control and Dynamics.

[34] D. Zanon and M. Campbell, “Keplerian based Spacecraft Cluster Planning for Low Earth
Orbits”, submitted to the AIAA Guidance, Navigation, and Control Conference, Aug. 2003.



